
API Authentication
Restrictions
Currently the authentication server and resource server is one and the same server. They might be

separated in the future. This description describes them as separate servers.

Client credentials which exist of an ID and a secret are created by Procura.

Authentication flow
The authentication flow uses the client credentials flow of OAuth 2.

The client, which MUST NOT be a browser, authenticates against the authentication server which

validates the credentials and returns an access token.

The client credentials must be base 64 encoded in the ‘Authorization’ headers. First join the id and

secret with a ‘:’ and then encode it. E.g. encode(“s6BhdRkqt3” + “:” + “gX1fBat3bV”)

Example request with client id: s6BhdRkqt3 and secret: gX1fBat3bV:

POST /oauth/token HTTP/1.1

Host: server.example.com
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded

grant_type=client_credentials

scope=api

Example response:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{
 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"bearer",

 "expires_in":3600

}

The access token can then be used to make request against the resource server.

Example request:

GET /api/object HTTP/1.1

Host: server.example.com

Authorization: Bearer 2YotnFZFEjr1zCsicMWpAA

When the token is expired the resource server returns a 401 Unauthorize HTTP status and the client

must authenticate again.

References
https://tools.ietf.org/html/rfc6 749#section-4.4

https://tools.ietf.org/html/rfc6

